Telegram Group & Telegram Channel
Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.



tg-me.com/ds_interview_lib/31
Create:
Last Update:

Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/31

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA